博彩平台 导师论坛
时间: 2015-10-22 发布者: 文章来源: 博彩平台 审核人: 浏览次数: 574
 

导师简介

樊建席(Jianxi Fan),博士,教授,博士生导师,中国计算机学会理论计算机科学专委会委员,江苏省青蓝工程中青年学术带头人,入选“2014年中国高被引学者(Most Cited Chinese Researchers)榜单”。研究方向包括:并行与分布式系统,计算机网络,算法设计与分析,图论等。主持国家自然科学基金项目3项,省部级项目3项。在国内外学术期刊和国际学术会议上发表论文近100篇,其中被SCI收录45篇、EI收录55篇(其中含SCI收录论文),发表的SCI论文的H因子已达到14,Google scholar引用1300多次,SCI他引400多次;特别地,其中7篇论文发表于国际并行与分布式系统领域的顶级学术期刊IEEE Trans. Parallel and Distributed Systems和IEEE Trans. Computers上。担任IEEE Trans. Parallel and Distributed Systems、IEEE Trans. Computers、Inform. Sci.、Algorithm.、J. Para. Distr. Comput.、Para. Comput.等多个国际学术期刊的审稿人。在2009年第二届国际并行算法,应用和程序设计(PAAP)学术会议上做了题为“Interconnection Networks with Path Selection”的特邀报告。担任PDCAT’12、ICS’12、PAAP’11、PAAP’10、全国可信计算’08等多个国际、国内学术会议的程序委员会委员。

 

 

主讲内容:

题目:Disjoint Path Covers Problems in Communication Networks

摘要:By Menger’s theorem, if the connectivity of a network is $n$, then there exist $n$ disjoint paths between any two distinct nodes. Disjoint paths between any two distinct nodes can be used in fault-tolerant transmission in various communication networks. That is, there always exists a fault-free path to transmit packets between two fault-free nodes as long as the number of faulty nodes in a communication network does not exceed its connectivity minus 1. Furthermore, if adding a restricted condition in $n$ disjoint paths between any two distinct nodes, one can obtain Disjoint Path Cover Problem (DPCP). That is, if the connectivity of a network is $n$, then are there exist $n$ disjoint paths between any two distinct nodes, such that the $n$ paths cover the whole nodes in it? Obviously, it is an enhance to Menger’s theorem model. It is clear that it dos not hold true for any network with connectivity $n$. So far, it has been proven that some networks such as recursive circulants, a part of hypercube-like interconnection networks, etc., have this property. In this talk, we will introduce the recent results on DPCP in some networks, in particular, in a family data center networks---DCell Networks.

 

时间:10月28日(周三)14:00-16:00

 

地点:理工楼103